Electric heating is a process in which electrical energy is converted to heat. Common applications include space heating, cooking, water heating and industrial processes. An electric heater is an electrical device that converts electric current to heat.[1] The heating element inside every electric heater is an electrical resistor, and works on the principle of Joule heating: an electric current passing through a resistor will convert that electrical energy into heat energy. Most modern electric heating devices use nichrome wire as the active element; the heating element, depicted on the right, uses nichrome wire supported by ceramic insulators.
Alternatively, a heat pump uses an electric motor to drive a refrigeration cycle, that draws heat energy from a source such as the ground or outside air and directs that heat into the space to be warmed. Some systems can be reversed so that the interior space is cooled and the warm air is discharged outside or into the ground.
Space heating is used to warm the interiors of buildings. Space heaters are useful in places where air-handling is difficult, such as in laboratories. Several methods of electric space heating are used.
Electric radiant heating uses heating elements that reach a high temperature. The element is usually packaged inside a glass envelope resembling a light bulb and with a reflector to direct the energy output away from the body of the heater. The element emits infrared radiation that travels through air or space until it hits an absorbing surface, where it is partially converted to heat and partially reflected. This heat directly warms people and objects in the room, rather than warming the air. This style of heater is particularly useful in areas through which unheated air flows. They are also ideal for basements and garages where spot heating is desired. More generally, they are an excellent choice for task-specific heating.
Radiant heaters operate silently and present the greatest potential danger of ignition of nearby furnishings due to the focused intensity of their output and lack of overheat protection. In the United Kingdom, these appliances are sometimes called electric fires, because they were originally used to replace open fires.
The active medium of the heater depicted at the right is a coil of nichrome resistance wire inside a fused silica tube, open to the atmosphere at the ends, although models exist where the fused silica is sealed at the ends and the resistance alloy is not nichrome.
Advantages of electric heating methods over other forms include precision control of temperature and distribution of heat energy, combustion not used to develop heat, and the ability to attain temperatures not readily achievable with chemical combustion. Electric heat can be accurately applied at the precise point needed in a process, at high concentration of power per unit area or volume. Electric heating devices can be built in any required size and can be located anywhere within a plant. Electric heating processes are generally clean, quiet, and do not emit much byproduct heat to the surroundings. Electrical heating equipment has a high speed of response, lending it to rapid-cycling mass-production equipment.
electric heater with timer |
没有评论:
发表评论